Columbia University

Technology Ventures

Soft​ ​Microrobotics​ ​and​ ​Its​ ​Application​ ​in​ ​Medicine

October 20, 2017
Speaker: 
Dr. Brad Nelson
Columbia University Morningside Campus
Davis Auditorium 530 West 120th Street, Room 412
New York, NY
10027
11:00am
Overview: The field of micro and nano robotics has made impressive strides over the past decade as researchers have created a variety of small devices capable of locomotion within liquid environments. Robust fabrication techniques have been developed, some devices have been functionalized for potential applications, and therapies are being actively considered. While excitement remains high for this field, a number of challenges must be addressed if continued progress towards clinical relevance is to be made, including the development of bioerodable and non-cytotoxic microrobots, development of autonomous devices capable of self-directed targeting, catheter-based delivery of microrobots near the target, and tracking and control of swarms of devices in vivo. As we consider advancements that are on the horizon, it becomes clear that the field of micro and nanorobotics is moving away from hard microfabricated devices and towards soft, polymeric structures capable of shape modification induced by environmental conditions and other “smart” behaviors. Just as the field of robotics witnessed the emergence of “soft robotics” in which soft and deformable materials are used as primary structural components, the field of microrobotics is beginning to experience a move towards “soft microrobots.” Soft microrobots are made of soft, deformable materials capable of sensing and actuation and have the potential to exhibit behavioral response. As we develop more complex soft microrobots, we are poised to realize intelligent microrobots that autonomously respond to their environment to perform more complex tasks.
 
Bio: Dr. Brad Nelson has been the Professor of Robotics and Intelligent Systems at ETH Zürich since 2002. He has over thirty years of experience in the field of robotics and has received a number of awards in the fields of robotics, nanotechnology, and biomedicine.